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Note: this is only a draft of the problems discussed on Tuesday and might contain some typos or more or less
imprecise statements. If you find some, please let me know.

1. ML Basic Concepts

2. Asymptotic Efficiency of the ML Estimator

ML Basic Concepts

Recall

f(y, θ) =

n∏
t=1

ft(yt, θ), (joint PDF)

`(y, θ) ≡ log f(y, θ) =

n∑
t=1

`t(yt, θ)︸ ︷︷ ︸
contribution

, (loglikelihood)

g(y, θ) =
(
gi(y, θ)

)
i=1,...,k

, (gradient/score vector)

gi(y, θ) ≡
∂`(y, θ)

∂θi
=

n∑
t=1

∂`t(yt, θ)

∂θi
, (typical element of g(y, θ))

H(θ) =
( ∂2`(θ)
∂θi∂θj

)
i,j=1,...,k

, (Hessian matrix)

G(y, θ) =
(
Gti(y

t, θ)
)
i=1,...,k, t=1,...,n

, (matrix of contributions to the gradient)

Gti(y
t, θ) ≡ ∂`(yt, θ)

∂θi
=

n∑
t=1

∂`t(yt, θ)

∂θi
, (typical element of G(y, θ))

gi(y, θ) =

n∑
t=1

Gti(y
t, θ), (10.27)

I(θ) ≡
n∑
t=1

It(θ)︸︷︷︸
contribution

(information matrix)

It(θ) =
(
Eθ
(
Gti(y

t, θ)Gti(y
t, θ)

))
i,j=1,...,k

, (covariance matrix of Gt(y
t, θ))

(Gt(y
t, θ)− tth row of G(y, θ))

It(θ) ≡ Eθ
(
g(y, θ)gT (y, θ)

)
(covariance matrix of the score vector) (?)

I(θ) ≡ plimn→∞
1

n
I(θ), (asymptotic information matrix)

H(θ) ≡ plimn→∞
1

n
H(θ), (asymptotic Hessian matrix)

I(θ) = −H(θ), (information matrix equality)

Below, we will prove (?).
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Covariance matrix of the gradient vector

DM, 10.5

Prove that the definition

I(θ) ≡
n∑
t=1

It(θ) =

n∑
t=1

Eθ(GTt (y, θ)Gt(y, θ)) (10.31)

of the information matrix is equivalent to the definition

I(θ) = Eθ(g(y, θ)gT (y, θ)).

Hint: Use the result

Eθ(GTti(yt, θ)Gsj(ys, θ)) = Eθ
(
Eθ(Gti(yt, θ)Gsj(ys, θ)|yt)

)
= Eθ

(
Eθ(Gti(yt, θ)Gsj(ys, θ)|yt)

)
= 0. (10.30)

The task is to show that the following relation holds

Eθ(g(y, θ)gT (y, θ)) =

n∑
t=1

Eθ(GTt (y, θ)Gt(y, θ)).

Since by (10.27) each element of the gradient vector is the sum of the elements of one of the columns of the
matrix of contributions to the gradient,

gi(y, θ) =

n∑
t=1

Gti(y
t, θ),

we can also write

g(y, θ) =

n∑
t=1

GTt (yt, θ).

Then we easily obtain the required result by writing

Eθ(g(y, θ)gT (y, θ)) = Eθ

((
n∑
t=1

GTt (yt, θ)

)(
n∑
s=1

Gs(y
t, θ)

))

= Eθ

(
n∑
t=1

n∑
s=1

GTt (yt, θ)Gs(y
t, θ)

)
(∗)
= Eθ

(
n∑
t=1

GTt (yt, θ)Gt(y
t, θ)

)

=

n∑
t=1

Eθ(GTt (y, θ)Gt(y, θ)),

where in (∗) we used that by (10.30) ∀t 6= s

Eθ

(
n∑
t=1

n∑
s=1

GTt (yt, θ)Gs(y
t, θ)

)
= 0.
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Asymptotic Efficiency of the ML Estimator

Below we will prove the ML estimator asymptotically achieves the Cramér-Rao lower bound – which is one
of many of its attractive features. Notice, however, that it happens, in general, only asymptotically, as, in
general, ML estimators are not unbiased (but are asymptotically unbiased).

To start with, consider any other root-n consistent and asymptotically unbiased estimator, which we will denote
θ̃ (θ̂ will stand for the MLE). It can be shown that1

plimn→∞
√
n
(
θ̃ − θ0

)
= plimn→∞

√
n
(
θ̂ − θ0

)
+ v,

where v is a random, zero mean k-vector, uncorrelated with plimn→∞
√
n
(
θ̂ − θ0

)
. Hence, taking Var’s on the

both sides of the above expression gives us the following result

Var
(

plimn→∞
√
n
(
θ̃ − θ0

))
= Var

(
plimn→∞

√
n
(
θ̂ − θ0

))
+ Var

(
v
)
.

Because Var
(
v
)

is PSD, it follows that the asymptotic covariance matrix of the other estimator θ̃ must be larger

than the one of the MLE θ̂. This asymptotic efficiency result is an asymptotic version of Cramér-Rao lower
bound (which applies to any unbiased estimator), stating that the covariance matrix of an unbiased estimator
cannot be smaller that I−1. In case of the MLE the latter is asymptotically equal to its covariance matrix. So
we can say that the MLE attains the ramér-Rao lower bound.

DM, 10.12

Let θ̂ denote any unbiased estimator of the k parameters of a parametric model fully specified by the loglikelihood
function `(θ). The unbiasedness property can be expressed as the following identity:

Eθ θ̃ =

∫
L(y, θ)θ̃dy = θ (1)

By using the relationship between L(y, θ) and `(y, θ) and differentiating this identity with respect to the compo-
nents of θ, show that

Covθ
(
g(θ), (θ̃ − θ)

)
= I

where I is a k× k identity matrix, and the notation Covθ indicates that the covariance is to be calculated under
the DGP characterized by θ.
Let V denote the 2k×2k covariance matrix of the 2k-vector obtained by stacking the k components of g(θ) above
the k components of θ̃ − θ. Partition this matrix into 4 k × k blocks as follows:

V =

[
V1 C
CT V2

]
(2)

where V1 and V2 are, respectively, the covariance matrices of the vectors g(θ) and θ̃− θ under the DGP charac-
terized by θ. Then use the fact that V is positive semidefinite to show that the difference between V2 and I−1(θ),
where I(θ) is the (finite-sample) information matrix for the model, is a positive semidefinite matrix.

First, notice that in (1) the RHS is simply θ, which differentiated wrt θ will be simply a k × k identity matrix
I. For the LHS, we had

`(y, θ) = logL(y, θ) ⇔ L(y, θ) = exp
(
`(y, θ)

)
,

so

∂L(y, θ)

∂θ
= L(y, θ)

∂`(y, θ)

∂θ︸ ︷︷ ︸
g(y,θ)

.

Hence, differentiation of (1) wrt θ gives ∫
L(y, θ)θ̃g(y, θ)dy = I. (3)

1Cf. Section 10.4 in DM.
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Next, notice that L(·, θ), i.e. a function of y with θ fixed, is the PDF of y, which means that the integral of two
functions wrt dL(y, θ) (with θ fixed) is just the covariance of these functions wrt the distribution characterized
by θ. Hence, (3) describes the covariance matrix of θ̃ and g(y, θ) := g(θ), i.e.

Covθ
(
g(θ), θ̃

)
=

∫
g(y, θ)θ̃L(y, θ)dy = I.

However, we know that2 Eθg(θ) = 0, and by the unbiasedness assumption Eθ θ̃ = θ, so

I = Covθ
(
g(θ), θ̃

)
def
= Eθ

((
g(θ)− Eθg(θ)

)(
θ̃ − Eθ θ̃

))
= Eθ

(
g(θ)

(
θ̃ − θ

))
=

∫
g(y, θ)(θ̃ − θ)L(y, θ)dy

= Covθ
(
g(θ), (θ̃ − θ)

)
,

which is the first of the required results.

Second, consider V as in (2). By definition of V , its off-diagonal blocks C and CT are given by the covariance
matrix of g(θ) and θ̃ − θ, which we have just shown is simply the identity matrix. As far as V1 is concerned, it
is the covariance matrix of the gradient vector g(θ) and we know from the previous exercise that it is equal to
I(θ), the information matrix. Finally, V as a covariance matrix needs to be PSD. Hence, we arrive at

V =

[
I(θ) I
I V2

]
≥ 0,

which implies that also
V −1 ≥ 0

as well as each of the diagonal blocks of V −1 must also be PSD. To complete the exercise we need to show that

V2 − I−1(θ) ≥ 0.

Recall the discussion about the asymptotic distribution of the Wald statistics, where we needed the inverse of
the covariance matrix of the IV estimator corresponding to part of this vector3. We used there the following
fact

A :=

[
A1 A12

A21 A2

]
⇒ A−1 =

[
· ·
·
(
A22 −A21A11A12

)−1] ,
which applied to the current case yields

V −1 =

[
· ·
·
(
V2 − I I−1(θ) I

)−1] .
So the lower diagonal block of the inverse of V , which, as we stated, is PSD, has the form(

V2 − I I−1(θ) I
)−1

=
(
V2 − I−1(θ)

)−1
.

This means that its inverse,
V2 − I−1(θ) ≥ 0,

i.e. is PSD – which it the second of the required results.

2Recall that a crucial property of the matrix G(y, θ) is that if y is generated by the GDP characterized by θ, then the
expectations of all the elements of the matrix, evaluated at θ, are zero – which is a consequence of the fact that all densities
integrate to 1. Then, summing the expectations of the elements in each column of G(y, θ) yields that Eθg(y, θ) = 0.

3Week 1, slide 48.
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